Learn how to move from exploring data to modeling it with confidence. In this course, you’ll build and interpret linear and logistic regression models in R to uncover relationships, make predictions, and quantify uncertainty.



Was Sie lernen werden
Fit and interpret linear and logistic regression models to examine relationships between predictors and outcomes.
Evaluate model performance and recognize limitations such as overfitting.
Apply bootstrapping and hypothesis testing to quantify and communicate uncertainty in model results.
Kompetenzen, die Sie erwerben
- Kategorie: Data-Driven Decision-Making
- Kategorie: Statistical Inference
- Kategorie: Statistical Modeling
- Kategorie: Statistical Analysis
- Kategorie: Predictive Modeling
- Kategorie: Statistical Hypothesis Testing
- Kategorie: Probability & Statistics
- Kategorie: Data Analysis
- Kategorie: Regression Analysis
- Kategorie: R Programming
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2025
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
In this module, you will learn how to describe relationships between variables using simple linear regression. You’ll practice fitting models, interpreting coefficients, and visualizing patterns to uncover meaningful insights from data. By the end of this module, you’ll know how to make predictions and identify when your model might not fit as well as you think.
Das ist alles enthalten
6 Videos7 Lektüren1 Aufgabe1 Plug-in
Real-world data is rarely simple. In this module, you’ll extend regression modeling to include multiple predictors and interaction effects. You’ll explore how adding variables improves model accuracy, how to interpret complex relationships, and how to avoid overfitting as your models become more sophisticated.
Das ist alles enthalten
3 Videos4 Lektüren1 Aufgabe1 Plug-in
Not all outcomes are numerical. In this module, you’ll learn how to model categorical outcomes (e.g., “yes/no” or “spam/not spam”) using logistic regression. You’ll discover how to calculate probabilities, classify outcomes, and assess the performance of your models. Along the way, you’ll explore how overfitting affects classification and reflect on how to interpret and communicate model predictions responsibly.
Das ist alles enthalten
5 Videos6 Lektüren1 Aufgabe1 Plug-in
Every model comes with uncertainty and understanding and communicating that uncertainty is what makes you a thoughtful data scientist. In this final module, you’ll explore bootstrapping and randomization methods to measure confidence in your results, conduct hypothesis tests, and communicate findings transparently. By the end, you’ll bring together your modeling and inference skills to draw clear, data-driven conclusions.
Das ist alles enthalten
4 Videos5 Lektüren1 Aufgabe1 Plug-in
Mehr von Data Analysis entdecken

Coursera Project Network
Status: Kostenloser Testzeitraum
Coursera Project Network
Status: Kostenloser TestzeitraumJohns Hopkins University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,

enthalten
