By the end of this course, learners will be able to design, build, train, and evaluate Convolutional Neural Networks (CNNs) using Python, gaining hands-on experience in one of the most in-demand deep learning skills. You will learn to set up both local and cloud-based environments, preprocess and augment image datasets, implement CNN architectures, and assess model accuracy and performance.



Master CNNs with Python: Build, Train & Evaluate Models
Dieser Kurs ist Teil von Spezialisierung für Deep Learning with Python: CNN, ANN & RNN

Dozent: EDUCBA
Bei
enthalten
Was Sie lernen werden
Explain CNN fundamentals and apply Python for model building.
Preprocess and augment image datasets for training workflows.
Design, implement, and evaluate CNNs for image classification.
Kompetenzen, die Sie erwerben
- Kategorie: Data Processing
- Kategorie: Computer Vision
- Kategorie: Image Analysis
- Kategorie: Artificial Neural Networks
- Kategorie: Development Environment
- Kategorie: Python Programming
- Kategorie: Deep Learning
- Kategorie: Tensorflow
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Applied Machine Learning
- Kategorie: Google Cloud Platform
- Kategorie: Keras (Neural Network Library)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2025
7 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 2 Module
This module introduces learners to the essential foundations of Convolutional Neural Networks (CNNs) in Python, covering project setup, CNN architecture, coding, data preprocessing, and model evaluation. By the end, learners will be equipped to design, implement, and test CNN models for real-world image classification tasks.
Das ist alles enthalten
9 Videos3 Aufgaben1 Plug-in
Das ist alles enthalten
7 Videos4 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,


