Stanford University
DeepLearning.AI
Spezialisierung für Maschinelles Lernen
Stanford University
DeepLearning.AI

Spezialisierung für Maschinelles Lernen

#BreakIntoAI mit Machine Learning Specialization. Beherrschen Sie grundlegende KI-Konzepte und entwickeln Sie praktische Fähigkeiten im Bereich des maschinellen Lernens in dem einsteigerfreundlichen 3-Kurs-Programm des KI-Visionärs Andrew Ng

Unterrichtet in Deutsch (KI-Synchronisation)

Andrew Ng
Geoff Ladwig
Aarti Bagul

Dozenten: Andrew Ng

TOP-LEHRKRAFT

Befassen Sie sich eingehend mit einem Thema
4.9

(36,197 Bewertungen)

Stufe Anfänger

Empfohlene Erfahrung

2 months to complete
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Befassen Sie sich eingehend mit einem Thema
4.9

(36,197 Bewertungen)

Stufe Anfänger

Empfohlene Erfahrung

2 months to complete
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Erstellen Sie ML-Modelle mit NumPy & scikit-learn, erstellen und trainieren Sie überwachte Modelle für Vorhersagen und binäre Klassifizierungsaufgaben (lineare, logistische Regression)

  • Erstellen und trainieren Sie ein neuronales Netzwerk mit TensorFlow, um eine Mehrklassen-Klassifizierung durchzuführen, und erstellen und verwenden Sie Entscheidungsbäume und Baum-Ensemble-Methoden

  • Wenden Sie bewährte Methoden für die ML-Entwicklung an und nutzen Sie Techniken des unüberwachten Lernens, einschließlich Clustering und Anomalieerkennung

  • Aufbau von Empfehlungssystemen mit einem kollaborativen Filteransatz & einer inhaltsbasierten Deep Learning-Methode & Aufbau eines Deep Reinforcement Learning-Modells

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Unterrichtet in Deutsch (KI-Synchronisation)
31 Praxisübungen

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

Spezialisierung - 3 Kursreihen

Was Sie lernen werden

  • Erstellen Sie Modelle für maschinelles Lernen in Python mit den beliebten Bibliotheken für maschinelles Lernen NumPy & scikit-learn

  • Erstellen und trainieren Sie überwachte maschinelle Lernmodelle für Vorhersagen und binäre Klassifizierungsaufgaben, einschließlich linearer Regression und logistischer Regression

Kompetenzen, die Sie erwerben

Regressionsanalyse, Überwachtes Lernen, Feature Technik, Maschinelles Lernen, Python-Programmierung, Klassifizierungs- und Regressionsbaum (CART), Statistische Modellierung, Prädiktive Modellierung, Scikit Learn (Bibliothek für Maschinelles Lernen), Datenumwandlung, Künstliche Intelligenz, Angewandtes maschinelles Lernen, NumPy und Jupyter

Was Sie lernen werden

  • Erstellen und trainieren Sie ein neuronales Netzwerk mit TensorFlow, um eine Mehrklassen-Klassifizierung durchzuführen

  • Wenden Sie Best Practices für die Entwicklung von maschinellem Lernen an, damit Ihre Modelle auf Daten und Aufgaben in der realen Welt verallgemeinert werden können

  • Erstellen und verwenden Sie Entscheidungsbäume und Baum-Ensemble-Methoden, einschließlich Random Forests und Boosted Trees

Kompetenzen, die Sie erwerben

Künstliche neuronale Netze, Tensorflow, Maschinelles Lernen, Lernen mit Entscheidungsbäumen, Random Forest Algorithmus, Klassifizierungs- und Regressionsbaum (CART), Leistungsoptimierung, Überwachtes Lernen, Verantwortungsvolle KI, Deep Learning und Datenethik

Was Sie lernen werden

  • Verwenden Sie Techniken des unüberwachten Lernens für unüberwachtes Lernen: einschließlich Clustering und Erkennung von Anomalien

  • Erstellen Sie Empfehlungssysteme mit einem kollaborativen Filteransatz und einer inhaltsbasierten Deep Learning-Methode

  • Erstellen Sie ein tiefes Reinforcement Learning Modell

Kompetenzen, die Sie erwerben

Reinforcement Learning, Unüberwachtes Lernen, Anomalie-Erkennung, Deep Learning, Algorithmen, Überwachtes Lernen, Dimensionalitätsreduktion, Datenethik, Maschinelles Lernen, Künstliche Intelligenz, Angewandtes maschinelles Lernen und Künstliche Intelligenz und Maschinelles Lernen (KI/ML)

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozenten

Andrew Ng

TOP-LEHRKRAFT

Stanford University
51 Kurse9.251.368 Lernende

von

Stanford University
DeepLearning.AI

Vergleich mit ähnlichen Produkten

Bewertung
Niveau
Kompetenzen
Werkzeuge
Zuletzt aktualisiert
Anzahl der praktischen Übungen
Berechtigung zum Erwerb eines Abschlusses
Teil von Coursera Plus

Ihnen könnte auch Folgendes gefallen:

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen

¹ Median salary and job opening data are sourced from Lightcast™ Job Postings Report. Content Creator, Machine Learning Engineer and Salesforce Development Representative (1/1/2024 - 12/31/2024) All other job roles (10/1/2024 - 10/1/2025)