Advance your PyTorch skills by building sophisticated deep learning models and preparing them for deployment. You’ll design custom architectures that go beyond Sequential models, exploring Siamese Networks, ResNet, and DenseNet to understand how modern systems handle complex data.


PyTorch: Advanced Architectures and Deployment
Ce cours fait partie de PyTorch for Deep Learning Certificat Professionnel

Instructeur : Laurence Moroney
Expérience recommandée
Ce que vous apprendrez
Design and implement advanced architectures in PyTorch.
Apply advanced techniques in vision, language, and generative modeling—including Transformers and diffusion models.
Prepare, compress, and deploy models for real-world use.
Compétences que vous acquerrez
- Catégorie : PyTorch (Machine Learning Library)
- Catégorie : Application Deployment
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Software Visualization
- Catégorie : Dimensionality Reduction
- Catégorie : Generative AI
- Catégorie : Deep Learning
- Catégorie : Computer Vision
- Catégorie : Artificial Neural Networks
Détails à connaître

Ajouter à votre profil LinkedIn
octobre 2025
8 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Software Development
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de DeepLearning.AI

Il y a 4 modules dans ce cours
This module introduces custom architectures that go beyond Sequential models, showing how PyTorch’s dynamic graphs support multi-input/multi-output design, parameter sharing, conditional execution, and dynamic creation. You’ll build Siamese Networks, ResNet, and DenseNet to see how architectural choices solve real challenges like similarity comparison, vanishing gradients, and information reuse.
Inclus
5 vidéos3 lectures2 devoirs1 devoir de programmation3 laboratoires non notés
This module explores specialized vision approaches in PyTorch, starting with how receptive fields grow in CNNs and moving into interpretability tools like saliency maps and Grad-CAM to reveal what drives model predictions. You’ll then dive into generative models, using diffusion techniques with Hugging Face’s diffusers library and Stable Diffusion to create images while experimenting with parameters that shape the output.
Inclus
5 vidéos1 lecture2 devoirs1 devoir de programmation3 laboratoires non notés
This module demystifies transformer architectures by showing how modern NLP models are built from familiar PyTorch components like linear layers, embeddings, and attention. You’ll explore encoder-only, decoder-only, and encoder-decoder designs step by step, learning how attention, positional encoding, and cross-attention make these models so powerful for tasks from classification to translation.
Inclus
5 vidéos1 lecture2 devoirs1 devoir de programmation3 laboratoires non notés
This module bridges the gap between training models and deploying them in the real world, covering how to save, track, and manage experiments with PyTorch serialization and MLflow. You’ll then make models portable with ONNX and optimize them for production using pruning and quantization techniques that shrink size and boost speed without losing accuracy.
Inclus
6 vidéos3 lectures2 devoirs1 devoir de programmation4 laboratoires non notés
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Software Development

DeepLearning.AI

DeepLearning.AI
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,