By completing this course, learners will be able to prepare datasets in R, apply statistical and visualization techniques, build regression models, and design, run, and evaluate neural networks. The course begins with data preparation essentials, including working with dataframes, descriptive statistics, and environment setup, ensuring learners can confidently manage their workflow. It then advances to data visualization, where learners generate line graphs, scatter plots, and advanced visualizations to interpret patterns and relationships. Regression modeling concepts are introduced to provide a solid predictive foundation. Finally, the course transitions to deep learning, guiding learners through dataset preparation, neural network coding, multilayer perceptron (MLP) architecture, and predictive testing.



Was Sie lernen werden
Prepare datasets, apply stats, and create visualizations in R.
Build and evaluate regression models for predictive analysis.
Design, run, and test neural networks using R and MLPs.
Kompetenzen, die Sie erwerben
- Kategorie: Statistical Programming
- Kategorie: Artificial Neural Networks
- Kategorie: Regression Analysis
- Kategorie: Data Visualization Software
- Kategorie: Data Manipulation
- Kategorie: Predictive Modeling
- Kategorie: Data Cleansing
- Kategorie: Predictive Analytics
- Kategorie: R Programming
- Kategorie: Performance Testing
- Kategorie: Scatter Plots
- Kategorie: Data Science
- Kategorie: Statistical Methods
- Kategorie: Deep Learning
- Kategorie: Descriptive Statistics
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2025
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 3 Module
This module introduces learners to the fundamentals of working with R for data science and deep learning projects. Learners will explore dataframes, descriptive statistics, directory setup, variable assignment, and essential R syntax. The module ensures that learners can confidently prepare their environment and datasets before advancing to complex modeling.
Das ist alles enthalten
11 Videos4 Aufgaben1 Plug-in
This module focuses on building strong visualization and regression skills in R. Learners will generate various plots such as line graphs, scatter plots, and multiple plot frames to explore data patterns. The module also introduces regression modeling concepts, including linear and multiple regression, to establish a strong foundation for predictive modeling.
Das ist alles enthalten
9 Videos4 Aufgaben
This module transitions learners from regression models to deep learning with neural networks in R. It covers preparing datasets, running neural network code, analyzing hidden layers, and evaluating model predictions. By the end of the module, learners will be able to design, execute, and test neural networks for real-world predictive tasks.
Das ist alles enthalten
17 Videos5 Aufgaben
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,

enthalten
