This 3-course Specialization from Google Cloud and New York Institute of Finance (NYIF) is for finance professionals, including but not limited to hedge fund traders, analysts, day traders, those involved in investment management or portfolio management, and anyone interested in gaining greater knowledge of how to construct effective trading strategies using Machine Learning (ML) and Python. Alternatively, this program can be for Machine Learning professionals who seek to apply their craft to quantitative trading strategies. By the end of the Specialization, you'll understand how to use the capabilities of Google Cloud to develop and deploy serverless, scalable, deep learning, and reinforcement learning models to create trading strategies that can update and train themselves. As a challenge, you're invited to apply the concepts of Reinforcement Learning to use cases in Trading. This program is intended for those who have an understanding of the foundations of Machine Learning at an intermediate level. To successfully complete the exercises within the program, you should have advanced competency in Python programming and familiarity with pertinent libraries for Machine Learning, such as Scikit-Learn, StatsModels, and Pandas; a solid background in ML and statistics (including regression, classification, and basic statistical concepts) and basic knowledge of financial markets (equities, bonds, derivatives, market structure, and hedging). Experience with SQL is recommended.





Spécialisation Machine Learning for Trading
Start Your Career in Machine Learning for Trading. Learn the machine learning techniques used in quantitative trading.

Instructeur : Jack Farmer
Inclus avec 
(1,114 avis)
Expérience recommandée
(1,114 avis)
Expérience recommandée
Ce que vous apprendrez
- Understand the structure and techniques used in machine learning, deep learning, and reinforcement learning (RL) strategies. 
- Describe the steps required to develop and test an ML-driven trading strategy. 
- Describe the methods used to optimize an ML-driven trading strategy. 
- Use Keras and Tensorflow to build machine learning models. 
Vue d'ensemble
Compétences que vous acquerrez
- Securities Trading
- Data Pipelines
- Reinforcement Learning
- Financial Market
- Deep Learning
- Technical Analysis
- Market Trend
- Applied Machine Learning
- Artificial Neural Networks
- Time Series Analysis and Forecasting
- Financial Trading
- Portfolio Management
- Google Cloud Platform
- Supervised Learning
- Statistical Machine Learning
- Machine Learning Algorithms
- Machine Learning
- Artificial Intelligence and Machine Learning (AI/ML)
Outils que vous découvrirez
Ce qui est inclus

Ajouter à votre profil LinkedIn
Améliorez votre expertise en la matière
- Acquérez des compétences recherchées auprès d’universités et d’experts du secteur
- Maîtrisez un sujet ou un outil avec des projets pratiques
- Développez une compréhension approfondie de concepts clés
- Obtenez un certificat professionnel auprès de Google Cloud

Spécialisation - série de 3 cours
Ce que vous apprendrez
- Understand the fundamentals of trading, including the concepts of trend, returns, stop-loss, and volatility. 
- Define quantitative trading and the main types of quantitative trading strategies. 
- Understand the basic steps in exchange arbitrage, statistical arbitrage, and index arbitrage. 
- Understand the application of machine learning to financial use cases. 
Compétences que vous acquerrez
Ce que vous apprendrez
- Design basic quantitative trading strategies 
- Use Keras and Tensorflow to build machine learning models 
- Build a pair trading strategy prediction model and back test it. 
- Build a momentum-based trading model and back test it. 
Compétences que vous acquerrez
Ce que vous apprendrez
- Understand the structure and techniques used in reinforcement learning (RL) strategies. 
- Understand the benefits of using RL vs. other learning methods. 
- Describe the steps required to develop and test an RL trading strategy. 
- Describe the methods used to optimize an RL trading strategy. 
Compétences que vous acquerrez
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Comparer avec des produits similaires
| Évaluation | ||||
|---|---|---|---|---|
| Niveau | ||||
| Compétences | ||||
| Outils | ||||
| Dernière mise à jour | ||||
| Nombre d'exercices pratiques | ||||
| Éligibilité au diplôme | ||||
| Partie de Coursera Plus | 
Vous aimerez peut-être aussi
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To be successful in this course, you should have a basic competency in Python programming and familiarity with the Scikit Learn, Statsmodels and Pandas library. You should have a background in statistics (expected values and standard deviation, Gaussian distributions, higher moments, probability, linear regressions) and foundational knowledge of financial markets (equities, bonds, derivatives, market structure, hedging).
This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.
Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.
Plus de questions
Aide financière disponible,



